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Società Italiana di Fisica
Springer-Verlag 2002

Quantum key distribution using quantum-correlated photon
sources

P.J. Edwardsa, G.H. Pollard, and W.N. Cheung

Advanced Telecommunications and Quantum Electronics Research Centre, University of Canberra, Canberra ACT 2601,
Australia

Received 14 July and Received in final form 20 November 2001

Abstract. Quantum key exchanges using weak coherent (Poissonian) single-photon sources are open to
attack by a variety of eavesdropping techniques. Quantum-correlated photon sources provide a means of
flagging potentially insecure multiple-photon emissions and thus extending the secure quantum key chan-
nel capacity and the secure key distribution range. We present indicative photon-counting statistics for
a fully correlated Poissonian multibeam photon source in which the transmitted beam is conditioned by
photon number measurements on the remaining beams with non-ideal multiphoton counters. We show that
significant rejection of insecure photon pulses from a twin-beam source cannot be obtained with a detec-
tor having a realistic quantum efficiency. However quantum-correlated (quadruplet or octuplet) multiplet
photon sources conditioned by high efficiency multiphoton counters could provide large improvements in
the secure channel capacity and the secure distribution range of high loss systems such as those using the
low earth orbit satellite links proposed for global quantum key distribution.

PACS. 03.67.Dd Quantum cryptography – 02.50.Fz Stochastic analysis – 42.50.Lc Quantum fluctuations,
quantum noise, and quantum jumps

1 Introduction

Current quantum key distribution systems commonly em-
ploy weak Poissonian laser and light- emitting diodes
as quasi single-photon sources. However it is well
known that such systems are susceptible to “inter-
cept/resend”, “beam-splitter” and “photon number split-
ting” attacks [1–3]. If the transmitted key bits contain two
or more photons, a hypothetical Eve, constrained only by
the laws of physics and not by the realities of contem-
porary technology could gain significant Shannon infor-
mation without disturbing the quantum channel and so
compromise the security of the key.

In lossy systems such as those employing low earth or-
bit satellites as key couriers, it is generally recognised that
the key exchange will be totally insecure if the number of
transmitted multiple photon signals exceeds the number
of received single photon signals [3]. For the weak coher-
ent (Poissonian) photon sources currently used this leak-
age of Shannon entropy increases with the mean photon
number 〈n〉, which must therefore be kept small in or-
der to maintain secure key exchange over a lossy channel.
In consequence the probability of single photon emission,
and therefore the transmission efficiency, will be corre-
spondingly small, most pulses being empty of photons.
For example for a multiple-photon “leakage” probability
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L = P (n > 1) ≈ 〈n〉2/2 < 0.005, the single photon proba-
bility S = P (n = 1) ≈ 〈n〉 < 0.1, is unavoidably low, and
the “no photon” probability P (n = 0) ≈ (1 − 〈n〉) > 0.9,
unavoidably high. This enforced trade between potential
entropy leakage (multiple-photon probability) and channel
efficiency (single-photon probability) becomes even more
unfavourable at low single-photon efficiencies when the
bit error rate due to background photons and dark counts
further restricts the secure key bit transfer rate.

Improved methods of single-photon generation for
which the single photon probability S and the ratio S/L
are both higher than for Poissonian sources are currently
under active investigation [4–8].

We recently proposed [9] a novel scheme based on an
extension of the correlated twin beam concept [10–12] in
which one of two quantum-correlated beams formed by
parametric down conversion (PDC) is used to condition
the other beam [3]. Our conditional single-photon gener-
ating scheme requires strong photon number-correlations
between a multiplet of spatially separated beams each
of which is monitored by a high efficiency multiphoton
counter capable of differentiating between single-photon
and multiple-photon pulses [12–14].

Multiple-photon events are detected and either deleted
during the quantum key transmission or else subse-
quently discarded in the error correction and privacy
amplification dialogue following the transmission. Al-
though not yet demonstrated in the laboratory, a possible
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realisation might be a tandem array of two or more
quantum wells, microcavities, or quantum dot light-
emitters [15]. This would represent an extension to the
mesoscopic scale of the strong quantum correlation ob-
served between the bright beams emitted from arrays of
macroscopic semiconductor junction light-emitting diodes
and diode lasers when these are electrically coupled to-
gether [15–20].

We first briefly review the limitations of an uncondi-
tioned Poissonian photon source. We then obtain indica-
tive statistics for a fully correlated multiplet photon source
conditioned by one or more high quantum efficiency noise-
less photon counters.

2 Single Poissonian photon beam

Consider an ideal semiconductor light-emitting diode or
ideal laser diode driven by a periodic train of identi-
cal current pulses. These generate a train of weak light
pulses each of which contains a Poisson-distributed num-
ber of photons, with the same mean photon number per
pulse 〈n〉. This is a typical realisation of a quasi-single-
photon QKD source.

For later comparison with the conditioned multiple
beam statistics we note the Poisson probability that a
pulse will contain exactly n photons is

P (n) = [〈n〉n/(n!)] exp(−〈n〉), (1)

so that:

N1 = P (0) = exp(−〈n〉) ≈ (1 − 〈n〉); (2)
S1 = P (1) = 〈n〉 exp(−〈n〉) ≈ 〈n〉; (3)

L1 = P (> 1) = 1 − (1 + 〈n〉) exp(−〈n〉) ≈ 〈n〉2/2; (4)

where the approximations refer to small mean numbers,
〈n〉 � 1.

Figure 1 shows the variation of N , S, L and L/S
with 〈n〉. Note that while the maximum value of the single
photon probability S = 1/e = 0.37 for 〈n〉 = 1, such a high
value of 〈n〉 is unusable because of the correspondingly
high leakage probability of multiple photons, L = 0.26.
Each multiple photon pulse carries a potentially inse-
cure bit which can in principle be intercepted and copied
clandestinely. The ratio S/L is therefore one convenient
parameter to characterise the quality of a single-photon
generator.

A conservative and necessary (but not sufficient) con-
dition for the secure exchange of a key is that the number
of multiple bits available for covert copying by an eaves-
dropper at the transmitter must not exceed the number
of single photon reaching the receiver [3].

For single-photon channel transmission probability ηT,
this means that ηTP (n = 1) > P (n > 1), or ηTS/L > 1.
A conservative lower limit for the parameter S/L re-
quired for secure key exchange over a lossy channel is
then the channel attenuation (1/ηT). A convenient fig-
ure of merit (Qs) for a single-photon quantum key source
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Fig. 1. Unconditioned Poissonian photon source: S/L =
P (1)/P (> 1) (solid curve); empty pulse probability, P (0) (dot-
ted curve); single photon probability, P (1) (dashed curve);
multiple photon probability P (> 1) (dot-dashed curve).

is the product of the maximum permissible secure chan-
nel loss (1/ηT = S/L) and the single-photon transmitter
efficiency, S:

Qs = S2/L. (5)

Evidently S/L must certainly exceed 1, corresponding to
a lossless channel with ideal photon detection. Reference
to equations (1–4) and Figure 1 shows that this limits 〈n〉
to values less than 1.33 for a secure lossless, ideal noise-
less Poisson channel. Practical lossy channels necessitate
much higher values of S/L. These can only be achieved by
greatly reducing the value of 〈n〉 and so sacrificing trans-
mitter efficiency. In the limit of small 〈n〉 � 1, S = 〈n〉,
S/L = 2/〈n〉 and Qs = 2. A channel loss (1/ηT) of greater
than 100 (20 decibels) therefore restricts S to less than
0.02. Secure key transfer is thus achieved at the cost of low
channel efficiency. The minimum tolerable channel trans-
mission factor is,

ηT(min) = L1/S1 = P (n > 1)/P (n1 = 1)
= [exp(〈n〉) − (1 + 〈n〉)]/〈n〉 · (6)

From equation (6) above, since L1/S1 ≈ 〈n〉/2 for
small 〈n〉, the corresponding secure BB84 [21] Poisson
channel efficiency is then,

ε(max) ≈ ηT(min)〈n〉/2 = 〈n〉2/4 = η2
T(min). (7)

A single-mode fibre QKD channel with an attenuation of,
say, 0.5 dB/km (a conservative estimate of the loss en-
countered in public switched optical networks operating
at long wavelengths) can therefore be no longer than

R = 20 log10(1/ηT(min)) = 10 log10(1/ε), (8)
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with R in km and ε = 〈n〉2/4, the corresponding secure
channel efficiency for noise-free key exchange using the
BB84 protocol.

For secure QKD systems operating with 〈n〉 = 0.1, the
maximum permissible channel loss is then only 13 dB, cor-
responding to a noiseless BB84 Poisson channel efficiency,
ε of less than 0.0025 bits per transmitted symbol.

It is apparent that this severely limits the efficiency
and therefore the (bit rate) capacity of a secure lossy chan-
nel. In practice the efficiency and capacity will be signifi-
cantly lower because of the need to discard erroneous bits
and to institute privacy amplification in order to main-
tain security in the presence of thermal and background
photon counting noise.

Earth satellite − based QKD systems have been pro-
posed [23] in which the channel attenuation is typically
greater than 30 dB (ηT < 10−3). The corresponding se-
cure channel efficiency (ε) will then (from Eq. (7)), be less
than 10−6, even assuming ideal detection.

It has been argued that the physical security associated
with “line of sight” systems of this kind allow the condi-
tion expressed in equation (6) to be relaxed [24]. Other
authors [3] argue that the security of quantum key sys-
tems should be guaranteed by the laws of physics, rather
than by physical circumstances and current technology.
If this latter view is accepted, the capacity of Poissonian
channels will be limited so severely by equations (6–8),
that they are unlikely to be useful for any purpose other
than low loss, low capacity, short range quantum key dis-
tribution. Single photon sources employing single quan-
tum dots, and diamond colour centres are therefore being
developed [4–8] with reported S/L ratios approaching 102.

3 Conditional single-photon sources

Considerations such as those above indicate the desirabil-
ity of realising photon transmitters for which the ratio
L/S = P (n > 1)/P (n = 1) is much lower and the figure
of merit Qs = S2/L is much higher than that for Poisso-
nian sources. Ideally such sources should emit only single
photons on demand.

In what follows, we shall examine the potential gains
in secure channel capacity and range to be had from the
use of conditioned single photon sources in a quantum key
transmitter. For simplicity we shall assume fully correlated
Poissonian photon sources, each with the same mean emis-
sion rate. As we shall show, conditioned twin-beam sources
suffer from the disadvantage that an unrealistically high
quantum detector efficiency is required. However, one can
take advantage of the repeated measurement of photon
number provided by a larger array to improve the iden-
tification (and subsequent rejection) of multiple-photon
signals.

In the following sections we discuss one method
of achieving this based on quantum- correlated multi-
ple beams. The relative probability (L/S) of insecure
multiple-photon signals is strongly suppressed and the fig-
ure of merit Qs is raised above the Poissonian values by a
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Fig. 2. Representation of conditional single-photon multiplet
m-beam source conditioned by (m − 1) multiphoton coun-
ters C2, C3, ...Cm coupled to correlated beams B2, B3, ..., Bm.
Logic gates G2, G3, ..., Gm represent the rejection of photon
pulses from B1 if n2 > 1, or n3 > 1, ..., or nm > 1.

conditioning process, allowing secure quantum keys to be
exchanged over longer distances at higher rates.

The process is shown schematically in Figure 2.
Quantum-correlated photon emitters B1, ..., Bm are shown
electrically connected together and driven by repetitive
pulse generator G. The transmitter beam, B1, is coupled
to a modulating device before being launched into an opti-
cal fibre or free-space. If each transmitted pulse (from B1)
contains n1 photons then for fully correlated beams the
same photon number n1 will be replicated at B2, ..., Bm

and will be separately counted by the (m − 1) noiseless
multiphoton counters C2 through Cm, each with the same
quantum efficiency (single-photon counting efficiency), η.
For simplicity we assume that n1 is a Poisson variable. It
then follows that photon counts n2, n3, ., nm are also Pois-
sonian with the same mean 〈nj〉 = η〈n1〉 for j = 2, ...,m.

Figure 2 shows the logic of this conditioning process
in which gate G2 is closed if n2 > 1, gate G3 is closed if
n3 > 1,..., and gate Gm is closed if nm > 1. If any one of
the (m−1) independent counts n2 through nm exceeds 1,
the corresponding pulse is removed from the sequence of
photon pulses from B1, leaving the conditioned sequence
{B1|(B2, ..., Bm)} available for the key exchange. A pho-
ton pulse from B1 will pass through all gates and be in-
cluded in the key transfer only if the counters register
either one photon per pulse or none. The logic gates do
not necessarily represent physical devices or operations al-
though these are certainly not excluded. Insecure pulses
can therefore be identified and removed prior to transmis-
sion or subsequently discarded in the post key transmis-
sion dialogue.

The multiple beams generated by tandem arrays of
macroscopic semiconductor junctions are generally sub-
Poissonian [16] while PDC twin beams have excess num-
ber variance. In order to simplify the analysis we assume
Poissonian source statistics so that the analysis is “worst
case” in this respect.

We also assume noiseless detection. This latter as-
sumption is realistic in that a state-of-the-art multiphoton
detector such as the visible light photon counter [14] has
nanosecond resolution and a dark count of order 104 s−1.
The noise count in any one detector will then be of order
10 s−1 for a pulse repetition rate of 106 s−1, typically less
than 0.01% of the single photon counting rate. The effects
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of noise on both Alice’s and Bob’s detectors can thus be
minimised, as in other single-photon systems, by precise
time-gating.

Our third simplifying assumption will be to assume
multiphoton counters characterised by a single parame-
ter, the single-photon counting “quantum” efficiency, η.
With this assumption the two-photon counting efficiency
is η2, the N -photon counting efficiency is ηN and the pho-
ton counts remain Poissonian. Coupling efficiencies will
generally be less than 100%. In our calculations we have
therefore used external single-photon detection efficien-
cies as low as 50%. In later examples (shown in Figs. 5
and 6), we have taken η = 0.875 [13], corresponding to an
ideal two-photon counting efficiency of 0.77. This latter
figure is somewhat higher than the external two-photon
counting efficiency currently achieved [14] so it should be
regarded as an upper limit. Note that the correlated pho-
tons emitted from different junction in Alice’s semicon-
ductor multiplet source may have different wavelengths.
Thus, the wavelength of the transmitted photon could be
tuned (by choice of band gap) to 1 550 nm to minimise
fibre transmission loss, while the wavelength of the condi-
tioning photons could be tuned to 700 nm for maximum
detection efficiency using current multiphoton counters.

4 Quantum-correlated photon twin beam

Consider two fully number-correlated pulsed photon
beams B1, B2 (m = 2 in Fig. 2). These might be re-
alised by the use of parametric down conversion [11] or, as
suggested, by pulsed electrically coupled mesoscopic light-
emitters [15].

For the twin beam case the conditional probabilities
N2 = P (n1 = 0|n2 = 0, 1) and S2 = P (n1 = 1|n2 = 0, 1)
are then easily found from Bayes’ theorem to be :

N2 = [(1/(1 + η〈n1〉)] exp[−〈n1〉(1 − η)] (9)
S2 = [〈n1〉/(1 + η〈n1〉)] exp[−〈n1〉(1 − η)]. (10)

So that

L2 = P (n1 > 1|n2 = 0, 1) = 1 − N2 − S2

= 1 − [(1 + 〈n1〉)/(1 + η〈n1〉)] exp[−〈n1〉(1 − η)]. (11)

The leakage ratio:

L2/S2 = (D2 exp[〈n1〉(1 − η)] − [(1 + 〈n1〉)])/〈n1〉 (12)

in which the function D2(〈n1〉, η) = (1 + η〈n1〉) is plotted
in Figure 3 for a range of single-photon counting efficien-
cies η and mean photon numbers, 〈n〉. The uppermost
curves (for η = 0), correspond to the unconditioned single
beam. Figure 4 shows the conditioned single photon emis-
sion probability, S2 = P (n1 = 1). It shows the increase
in single-photon probability in the higher photon-number
regimes made possible by an efficiently conditioned Pois-
sonian source.

It is evident that high quantum efficiency is needed
in a conditioned twin beam source to effect a major im-
provement in either channel efficiency or security against
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Fig. 3. Mean number of multiple photon signals per single-
photon, L/S = P (n1 > 1)/P (n1 = 1) for a fully corre-
lated Poissonian twin-beam QKD transmitter conditioned by a
noiseless multiphoton counter with quantum efficiencies rang-
ing from 0 (top), through 0.5, 0.7, 0.8, 0.9, 0.95, 0.975 to 0.99
(bottom). The top curve (zero quantum efficiency) gives the
unconditional (single beam) Poisson probabilities.
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for a fully correlated Poissonian twin-beam QKD transmit-
ter conditioned by a noiseless multiphoton counter with quan-
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a beam-splitter attack. From equation (12), for 〈n〉 � 1,
L2/S2 ≈ 〈n1〉(1 − η2)/2, a factor of (1 − η2)−1 less
than for the unconditioned single beam. For η close to
1, L2/S2 ≈ 〈n1〉(1 − η), giving a reduction by a factor of
1/[2(1 − η)] = 50 for η = 0.99. This is a very significant
improvement since for the same 〈n〉 it would permit a fifty
fold (17 dB) increase in channel attenuation (correspond-
ing to a 34 km increase in fibre length, or a seven fold
increase in free-space range) without any loss of security,
albeit with the inevitable reduction in channel capacity.
Alternatively, for the same channel loss it would permit
a fifty fold increase in channel capacity through increased
〈n〉. Unfortunately, such a high value of counting efficiency
is well beyond the capabilities of current technology and
we must look to other means of beam conditioning which
make more relaxed demands on detector photon counting
efficiency.

5 Quantum – correlated multiplet beam

It has been shown [15–20] that arrays of semiconduc-
tor light emitting junctions provide photon “multiplet”
beams in which m, the number of correlated beams is
not restricted to 2 as for PDC twin beams. We shall
show that repeated (m − 1) photon number measure-
ments made with such a photon multiplet beam source
allows effective conditioning with much lower (and more
practical) detector efficiencies. It should be pointed out
however that although macroscopic quantum correlations
have been demonstrated with bright multiplet beams of
this type, successful extension to the single-photon num-
ber domain remains to be shown. However, Sumitomo et
alia [22] have recently confirmed by Monte Carlo simu-
lation the concept of efficient heralded twin-photon pro-
duction by a pair of series-coupled array of mesoscopic
light-emitting diodes.

Equations (9–12) for the conditioned twin beam source
can be extended (Appendix A) to multiplet (m-beam)
sources. For the triplet case (m = 3), where we identify
and reject multiple photon signals if either one of two
detectors register more than one count, we can rewrite
equation (12) as

L3/S3 = (D3 exp[〈n1〉(1 − η)2] − [(1 + 〈n1〉)])/〈n1〉 (13)

with

D3 =
[
1 + 2〈n1〉η(1 − η) + 〈n1〉η2

(
1 + 〈n1〉(1 − η)2

)]
.

(14)

Similarly from Appendix A, for the quad source (m = 4),

L4/S4 =(D4 exp[〈n1〉(1 − η)3] − [(1 + 〈n1〉)])/〈n1〉
(15)

with D4 =
[
1 + 3〈n1〉η(1 − η)2 + 3〈n1〉η2(1 − η)

×
{
1 + 〈n1〉(1 − η)3

}
+ 〈n1〉η3

×
{
1 + 3〈n1〉(1 − η)3 + 〈n1〉2(1 − η)6

}]
.
(16)

Table 1. Single-photon quantum key transmitter efficiency S,
multiple-photon leakage ratio Lm/Sm, and figure of merit Qs =
S2

m/Lm , in the small 〈n〉 approximation for multiplet (m-
beam) sources conditioned by (m − 1) noiseless multiphoton
counters with quantum efficiencies η = 0.875; 0.500.

M S Lm/Sm Qs (η) Qs (0.875) Qs (0.5)

1 <n> <n>/2 2 2 2

2 <n> ( )21 / 2n n< > ⋅ −
( )2

2

1 η−
8.53 2.67

3 <n> ( )221 / 2n η< > ⋅ −
( )22

2

1 η−
36.4 3.56

4 <n> ( )321 / 2n η< > ⋅ −
( )32

2

1 η−
155 4.74

8 <n> ( )721 / 2n η< > ⋅ −
( )2

2

1
7

η−
5.14 × 104 15.0

In the small 〈n〉 approximation, L3/S3 ≈ 2〈n〉(1− η)2, so
that, for example, if two identical detectors were used to
monitor two fully correlated beams of the triplet a more
realistic quantum efficiency of only 0.93 would be required
to obtain the 50 fold suppression of multiple photon sig-
nals referred to above. Proceeding further, for the quad
beam, L4/S4 ≈ 4〈n〉(1 − η)3, allowing the quantum effi-
ciency to be relaxed even further, to η = 0.85, while for
an octuplet beam with seven independent beam counters,
the required efficiency is only η = 0.65.

In general, for the m-fold beam the leakage ratio (to
first order in 〈n〉),

Lm/Sm = 〈n〉
(
1 − η2

)m−1
/2 (17)

and the figure of merit of the conditioned source,

Qs = 2(1 − η2)1−m. (18)

It follows that the leakage continues to drop by the fac-
tor (1 − η2) ≈ 2(1 − η) for every additional high effi-
ciency conditioning counter used. If we take η = 0.875,
the maximum single-photon counting detector efficiency
currently reported [13], the leakage drops by a maximum
factor of 4.27 with each additional conditioning beam.

Table 1 summarises these results for the case of
small 〈n〉, with η = 0.875 and η = 0.5 as examples. The
advantages to be had from using a high order multiplet
source conditioned by high efficiency multiphoton coun-
ters in a high loss quantum channel are evident.

Figure 5 shows the leakage Lm = P (> 1) plotted for
m = 0, 1, 2, 3, 4, and Figure 6 shows the ratio Lm/Sm for
η = 0.875. It is evident that the leakage suppression is
maintained for mean photon numbers close to unity. This
permits high values of the figure of merit Qs = S2

m/Lm to
be achieved. It is also evident from equations (17, 18) that
we can profitably trade beam number for detector quan-
tum efficiency to maintain a given degree of suppression.
Returning to the previous discussion, a fifty fold reduc-
tion in leakage requires either a single 99% (twin beam)
detector efficiency, two 93% efficient detectors for a triplet
beam, four 79% efficiency detectors for a quintuplet, seven
65% efficiency detectors or nine 59% efficient detectors.
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Fig. 5. Multiple photon number probabilities P (> 1) for a
fully correlated Poissonian multiplet beam source with condi-
tioning by (m − 1) noiseless multiphoton counters each with
quantum efficiency η = 0.875. Solid curve (m = 1); dotted
curve (m = 2); dot-dash curve (m = 3); dashed curve (m = 4).

6 Conclusions

The secure QKD outreach can be extended by reducing
the occurrence of multiple-photon signals in the key bit
sequence. One possible technique, discussed here, is the
use of a photon beam conditioning technique using corre-
lated multibeam (multiplet) photon sources monitored by
high quantum efficiency multiphoton detectors. In prac-
tice, for practical quantum counting efficiencies of less
than 90%, multiplet (quadruplet, or even octuplet) beams
must be employed. These could provide source parame-
ters S/L = P (1)/P (> 1) of 104 or more as required for
secure quantum key distribution by earth satellite, for rea-
sonable values of transmitter efficiency, S = P (1) > 0.1,
corresponding to a single-photon source figure of merit
Qs > 1 000. Entangled photon pair systems have been
shown to be immune to beam-splitting attacks [25], how-
ever it is difficult to see how global key distribution could
be implemented by earth satellites using entangled photon
twins.

Reasonably efficient multiphoton conditioning coun-
ters are currently available. It appears therefore that
if quantum-correlated multiple Poissonian photon beams
can be realised, then the L/S ratio may be lowered by sev-
eral orders of magnitude with a commensurate increase in
channel capacity and/or permissible secure channel loss
using existing detector technology.

However weak photon beams correlated at the single-
photon level remain to be demonstrated. Electrically cou-
pled arrays of single-electron/photon turnstile devices
such as quantum dot emitters or mesoscale light-emitting
semiconductor junctions may provide suitable quantum-
correlated multiplet beams [9,15,22].
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Fig. 6. The photon source parameter S/L = P (1)/P (> 1)
for a multiplet single-photon source conditioned by (m − 1)
noiseless multiphoton counters each with quantum efficiency
η = 0.875. Solid curve: m = 1; dotted curve: m = 2; dot-dash
curve: m = 3; dashed curve: m = 4.
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Appendix A

We sketch here the derivation of a general expression for
the multiple-photon “leakage” Lm, and the “leakage ratio”
Lm/Sm , the ratio of the conditional probabilities P (n1 >
1)/P (n1 = 1) given that none of the (m − 1) noiseless
photon counters with single-photon quantum efficiency η
register more than a single count.

From Section 3, the probability of a null count in every
one of the (m − 1) counters,

P{n2 = 0, n3 = 0, ..., nm = 0} =
∞∑

j=0

P [n1 = j and {n2 = 0, n3 = 0, ..., nm = 0}]

=
∞∑

j=0

[
(〈n1〉j exp(−〈n1〉))/j!

] [
(1 − η)m−1

]j

= exp
(
−〈n1〉

[
1 − (1 − η)m−1

])
.

Also, the probability of a single count in the mth counter
and null counts in every one of the remaining (m − 2)
counters,

P{n2 = 0, n3 = 0, ..., nm−1 = 0, nm = 1} =
∞∑

j=1

P [n1 =j and {n2 =0, n3=0, ..., nm−1 =0, nm = 1}],
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becomes, after insertion of the Poisson and binomial prob-
ability functions, summation and collection of terms:

=
{
E0(〈n1〉(1 − η)m−1)

}
〈n1〉η(1 − η)m−2 exp(−〈n1〉),

where Er(x) =
∑∞

j=1(j
rxj−1)/(j − 1)!, so that E0(x) =

exp(x); E1(x) = (1 + x) exp(x); etc.

Similarly,

P{n2 = 0, n3 = 0, ..., nm−2 = 0, nm−1 = 1, nm = 1} =
∞∑

j=1

P [n1 = j and {n2 = 0, n3 = 0, nm−2 = 0,

nm−1 = 1, nm = 1}]
= {E1(〈n1〉(1 − η)m−1)}〈n1〉η2(1 − η)m−3 exp(−〈n1〉) ·

Further, proceeding in the same way,

P{n2 = 0, n3 = 0, ..., nm−3 = 0, nm−2 = 1,

nm−1 = 1, nm = 1} =
∞∑

j=1

P [n1 = j and {n2 = 0, n3 = 0,

nm−3 = 0, nm−2 = 1, nm−1 = 1, nm = 1}]
= {E2(〈n1〉(1 − η)m−1)}〈n1〉η3(1 − η)m−4 exp(−〈n1〉) ·

Hence,

P{n2 = 0 or 1, n3 = 0 or 1, ..., nm = 0 or 1} =

{exp(〈n1〉(1−η)m−1)+ 〈n1〉
m−1∑
j=1

(
m − 1

j

)
ηj(1−η)m−1−j

× Ej−1(〈n1〉(1 − η)m−1)} exp(−〈n1〉) = Cm,

say.
It then follows immediately that the conditional prob-

ability of exactly one photon per pulse from B1,

Sm =P{n1 = 1, n2 = 0 or 1, ..., nm = 0 or 1}
× (P{n2 = 0 or 1, ..., nm = 0 or 1})−1

=[〈n1〉 exp(−〈n1〉)]/Cm,

and

Lm = 1 − P{n1 = 0 or 1/n2 = 0 or 1,

n3 = 0 or 1, ..., nm = 0 or 1}
= 1 − (1 + 〈n1〉)C−1

m exp(−〈n1〉) ·

Thus, the leakage ratio for the m beam case,

Lm/Sm = [Cm exp(〈n1〉) − (1 + 〈n1〉)]/〈n1〉
= [Dm exp(〈n1〉

(
1 − η)m−1

)
− (1 + 〈n1〉)]/〈n1〉,

as in equations (12, 13, 15), where

Dm = Cm exp〈n1〉
[
1 − (1 − η)m−1

]
.
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